Preview

Russian Journal of Parasitology

Advanced search

REVIEWING ANTI-MALARIAL USAGE AND RESISTANCE PATTERNS AND ITS EFFECTS ON WORLD HEALTH ORGANISATION PROGRAMS

Abstract

The two most significant strains of human malaria parasites responsible for morbidity and mortality are  Plasmodium falciparum  and  P. vivax. One issue, which further compounds treatment of these pathogens, is one of drug resistance. Drug resistance often emerges from key mutations selected for by inadequate treatment regimes and has shown to be able to spread globally, further compounding the development of newer and more effective drug treatment programs, such as those from the World Health Organisation (WHO). Here we review the historical usage of anti-malarial drugs, the development of resistance in Africa and Asia, mechanisms of drug action and resistance, and the effects of resistance on WHO policy. 

About the Authors

Nikolce Kocovski
Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Austin Health, Heidelberg 3084, Victoria, Australia
Australia


William Godfrey L. L. B
The School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia
Australia


Derek Elkington B. Sc
School of Pathology and Laboratory Medicine, University of Western Australia, Crawley 6009, Western Australia, Australia
Australia


Christopher Weir B. Sc
Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3052, Victoria, Australia; University of Melbourne, Department of Medical Biology, Parkville 3010, Victoria, Australia; University of Edinburgh, School of Chemistry, Edinburgh EH9 3FJ, Scotland, United Kingdom.
Australia


References

1. Ashley E. A., Dhorda M., Fairhurst R. M. et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014 31; 371(5):411–23.

2. Petersen I., Eastman R., Lanzer M. Drug-resistant malaria: Molecular mechanisms and implications for public health. FEBS Letters. 2011; 585(11):1551–62.

3. Baird J. K. Evidence and implications of mortality associated with acute Plasmodium vivax malaria. Clinical microbiology reviews. 2013; 26(1):36–57.

4. Hoffman S. L., Subramanian G. M., Collins F. H., Venter J. C. Plasmodium, human and Anopheles genomics and malaria. Nature. 2002 7; 415(6872):702–9.

5. Maguire J. D., Sumawinata I. W., Masbar S. et al. Chloroquine-resistant Plasmodium malariae in south Sumatra, Indonesia. Lancet. 2002 6; 360(9326):58–60.

6. Visser B. J., van Vugt M., Grobusch M. P. Malaria: an update on current chemotherapy. Expert opinion on pharmacotherapy. 2014; 15(15):2219–54.

7. Dinko B., Oguike M. C., Larbi J. A., Bousema T., Sutherland C. J. Persistent detection of Plasmodium falciparum, P. malariae, P. ovale curtisi and P. ovale wallikeri after ACT treatment of asymptomatic Ghanaian school-children. International journal for parasitology Drugs and drug resistance. 2013 Dec;3:45–50.

8. Fatih F. A., Staines H. M., Siner A. et al. Susceptibility of human Plasmodium knowlesi infections to anti-malarials. Malaria Journal. 2013;12(1):1–15.

9. Ariey F., Witkowski B., Amaratunga C. et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505(7481):50–5.

10. Straimer J., Gnadig N. F., Witkowski B. et al. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science. 2015 Jan 23;347(6220):428–31.

11. Randrianarivelojosia M., Raveloson A., Randriamanantena A. et al. Lessons learnt from the six decades of chloroquine use (1945–2005) to control malaria in Madagascar. Transactions of The Royal Society of Tropical Medicine and Hygiene. 2009 1, 2009;103(1):3–10.

12. Murray C. J., Rosenfeld L. C., Lim S. S. et al. Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet. 2012 4;379(9814):413–31.

13. Miotto O., Almagro–Garcia J., Manske M. et al. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia. Nature genetics. 2013;45(6):648–55.

14. Eastman R. T., Fidock D. A. Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nature reviews Microbiology. 2009;7(12):864–74.

15. Dye C., Williams B. G. Multigenic drug resistance among inbred malaria parasites. Proceedings Biological sciences / The Royal Society. 1997 22;264(1378):61–7.

16. Dondorp A. M., Yeung S., White L. et al. Artemisinin resistance: current status and scenarios for containment. Nature reviews Microbiology. 2010;8(4):272–80.

17. Noedl H., Se Y., Schaecher K. et al. Evidence of Artemisinin-Resistant Malaria in Western Cambodia. New England Journal of Medicine. 2008;359(24):2619–20.

18. Tun K. M., Imwong M., Lwin K. M. et al. Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. The Lancet infectious diseases. 2015;15(4):415–21.

19. Talundzic E., Okoth S. A., Congpuong K. et al. Selection and spread of artemisinin-resistant alleles in Thailand prior to the global artemisinin resistance containment campaign. PLoS Pathog. 2015;11(4).

20. Takala–Harrison S., Jacob C. G., Arze C. et al. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J Infect Dis. 2015 1;211(5):670–9.

21. Nyunt M. H., Hlaing T., Oo H. W. et al. Molecular assessment of artemisinin resistance markers, polymorphisms in the k13 propeller, and a multidrug-resistance gene in the eastern and Western border areas of myanmar. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2015 15;60(8):1208–15.

22. WHO. Emergence and spread of artemisinin resistance calls for intensified efforts to withdraw oral artemisinin-based monotherapy from the market. Geneva, World Health Organisation: 2014.

23. Mishra N., Anvikar A. R., Shah N. K. et al. Prescription practices and availability of artemisinin monotherapy in India: where do we stand? Malaria journal. 2011;10:360.

24. Ricci C., Eliasson C., Macleod N., Newton P., Matousek P., Kazarian S. Characterization of genuine and fake artesunate anti-malarial tablets using Fourier transform infrared imaging and spatially offset Raman spectroscopy through blister packs. Anal Bioanal Chem. 2007;389(5):1525–32.

25. Nayyar G. M., Breman J. G., Newton P. N., Herrington J. Poor-quality antimalarial drugs in southeast Asia and sub-Saharan Africa. The Lancet infectious diseases. 2012;12(6):488–96.

26. Newton P. N., Green M. D., Mildenhall D. C. et al. Poor quality vital anti-malarials in Africa – an urgent neglected public health priority. Malaria journal. 2011;10:352.

27. Tabernero P., Fernandez F. M., Green M., Guerin P. J., Newton P. N. Mind the gaps–-the epidemiology of poor-quality anti-malarials in the malarious world--analysis of the WorldWide Antimalarial Resistance Network database. Malaria journal. 2014;13:139.

28. Trape J. F. The public health impact of chloroquine resistance in Africa. The American journal of tropical medicine and hygiene. 2001 12;64.

29. Baird J. K., Leksana B., Masbar S. et al. Diagnosis of resistance to chloroquine by Plasmodium vivax: timing of recurrence and whole blood chloroquine levels. Am J Trop Med Hyg. 1997;56(6):621–6.

30. Flannery E. L., Chatterjee A. K., Winzeler E. A. Antimalarial drug discovery – approaches and progress towards new medicines. Nature reviews Microbiology. 2013;11(12):849–62.

31. Schlitzer M. Malaria chemotherapeutics part I: History of antimalarial drug development, currently used therapeutics, and drugs in clinical development. ChemMedChem. 2007;2(7):944–86.

32. Miller L. H., Ackerman H. C., Su X. Z., Wellems T. E.. Malaria biology and disease pathogenesis: insights for new treatments. Nat Med. 2013;19(2):156–67.

33. Uhlemann A. C., Cameron A., Eckstein–Ludwig U. et al. A single amino acid residue can determine the sensitivity of SERCAs to artemisinins. Nature structural & molecular biology. 2005;12(7):628–9.

34. Plowe C. V. Malaria: Resistance nailed. Nature. 2014;505(7481):30–1.

35. Cui L., Su X–Z. Discovery, mechanisms of action and combination therapy of artemisinin. Expert Review of Anti-Infective Therapy. 2009;7(8):999–1013.

36. Cowman A. F. Functional analysis of drug resistance in Plasmodium falciparum in the post-genomic era. Int J Parasitol. 2001;31(9):871–8.

37. Mbengue A., Bhattacharjee S., Pandharkar T. et al. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature. 2015 30;520(7549):683–7.

38. Bhattacharjee S., Stahelin R. V., Speicher K. D., Speicher D. W., Haldar K. Endoplasmic reticulum PI(3)P lipid binding targets malaria proteins to the host cell. Cell. 2012 20;148(1–2):201–12.

39. Lin J. W., Spaccapelo R., Schwarzer E. et al. Replication of Plasmodium in reticulocytes can occur without hemozoin formation, resulting in chloroquine resistance. J Exp Med. 2015.

40. Regev–Rudzki N., Wilson Dw Fau – Carvalho T. G., Carvalho Tg Fau – Sisquella X. et al. Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell. 2013 23;153(5):1120–33.

41. Pink R., Hudson A., Mouries M. A., Bendig M. Opportunities and challenges in antiparasitic drug discovery. Nature reviews Drug discovery. 2005;4(9):727–40.

42. Nilsen A., LaCrue A. N., White K. L. et al. Quinolone-3-diarylethers: a new class of antimalarial drug. Sci Transl Med. 2013 20;5(177):177ra37.

43. Mombo–Ngoma G., Supan C., Dal–Bianco M. P. et al. Phase I randomized dose-ascending placebo-controlled trials of ferroquine - a candidate anti-malarial drug - in adults with asymptomatic Plasmodium falciparum infection. Malaria journal. 2011;10:53.

44. Zishiri V. K., Joshi M. C., Hunter R. et al. Quinoline antimalarials containing a dibemethin group are active against chloroquinone-resistant Plasmodium falciparum and inhibit chloroquine transport via the P. falciparum chloroquine-resistance transporter (PfCRT). Journal of medicinal chemistry. 2011 13;54(19):6956–68.

45. Burgess S. J., Selzer A., Kelly J. X. et al. A chloroquine-like molecule designed to reverse resistance in Plasmodium falciparum. Journal of medicinal chemistry. 2006 7;49(18):5623–5.

46. Kar S., Kar S. Control of malaria. Nature reviews Drug discovery. 2010;9(7):511–2.

47. Croft S. L., Duparc S., Arbe–Barnes S. J. et al. Review of pyronaridine anti-malarial properties and product characteristics. Malaria journal. 2012;11:270.

48. Rueangweerayut R., Phyo A. P., Uthaisin C. et al. Pyronaridine-artesunate versus mefloquine plus artesunate for malaria. N Engl J Med. 2012 5;366(14):1298–309.

49. Myint H. Y., Ashley E. A., Day N. P. et al. Efficacy and safety of dihydroartemisinin-piperaquine. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2007;101(9):858–66.

50. WHO. World Malaria Report. Geneva: World Health Organisation: 2014.

51. WHO. Status report on artemisinin resistance. Geneva: World Health Organisation: 2014.

52. WHO. Intensified efforts required to withdraw oral artemisinin-based monotherapies. WHO Drug Information. 2014;28(2).

53. WHO. Emergency response to artemisinin resistance in the Greater Mekong subregion. Regional framework for action 2013–2015. Geneva: World Health Organisation: 2013.

54. WHO. Global plan for artemisinin resistance containment (GPARC). Geneva: World Health Organisation: 2011.

55. Lubell Y., Dondorp A., Guerin P. J. et al. Artemisinin resistance-modelling the potential human and economic costs. Malaria journal. 2014;13:452.

56. Laufer M. K., Plowe C. V. Withdrawing antimalarial drugs: impact on parasite resistance and implications for malaria treatment policies. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy. 2004;7(4–5):279–88.

57. White N. J. Antimalarial drug resistance. J Clin Invest. 2004;113(8):1084–92.

58. Biamonte M. A., Wanner J., Le Roch K. G. Recent advances in malaria drug discovery. Bioorganic & Medicinal Chemistry Letters. 2013;23(10):2829–43.

59. Buckner F. S., Waters N. C., Avery V. M. Recent highlights in anti-protozoan drug development and resistance research. International Journal for Parasitology: Drugs and Drug Resistance. 2012;2(0):230–5.

60. Vessière A., Berry A., Fabre R., Benoit–Vical F., Magnaval J–F. Detection by real-time PCR of the Pfcrt T76 mutation, a molecular marker of chloroquine-resistant Plasmodium falciparum strains. Parasitology Research. 2004;93(1):5–7.


Review

For citations:


Kocovski N., Godfrey L. L. B W., Elkington B. Sc D., Weir B. Sc Ch. REVIEWING ANTI-MALARIAL USAGE AND RESISTANCE PATTERNS AND ITS EFFECTS ON WORLD HEALTH ORGANISATION PROGRAMS. Russian Journal of Parasitology. 2015;(3):65-74. (In Russ.)

Views: 207


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-8435 (Print)
ISSN 2541-7843 (Online)