Forecasting the mosquito population in the Kaluga Region using a time series analysis
https://doi.org/10.31016/1998-8435-2025-19-4-446-455
Abstract
The purpose of the research is to develop a seasonal forecasting model for mosquito populations (family Culicidae) in the Kaluga Region based on time series analysis methods with climatic factors taken into account, which ensures a forecast accuracy of at least 85% to plan proactive anti-epidemic measures.
Materials and methods. The study on mosquito population dynamics in the Kaluga Region for 2014–2024 used an integrated approach combining field observations, statistical analysis, and mathematical modeling. Climatic parameters (average monthly temperatures, precipitation, and air humidity) were analyzed in parallel. A time series modeling method was used.
Results and discussion. The forecasting model for mosquito populations in the Kaluga Region for 2024 was developed using the seasonal SARIMA model. The results obtained demonstrate the forecast reliability: the mean absolute percentage error is 7.9%, which means the forecast deviates from actual values by less than 8%, on average. The standard error of 147.2 specimens indicates that the forecast data may differ in absolute values from actual values by approximately 150 specimens, with an average population size of approximately 1,800–2,500 specimens. These values demonstrate the high model reliability and applicability for practical use. These results have important practical implications for planning timely treatments of areas, optimizing epidemiological surveillance, allocating resources to control disease vectors, and informing the public about periods of increased mosquito activity.
About the Authors
F. I. VasilevichРоссия
Nikanorova Anna M., Doctor of Veterinary Sciences, Associate Professor
Moscow
A. M. Nikanorova
Россия
Nikanorova Anna M., Doctor of Veterinary Sciences, Associate Professor
Kaluga
V. V. Kalmykov
Россия
Kalmykov Vadim V.
Moscow
References
1. Vasilevich F. I., Nikanorova А. М. The scientific basis for the prevention of zooanthroponic vectorborne diseases spread by parasitic arthropods of the center of the East European Plain. Rossiyskiy parazitologicheskiy zhurnal = Russian Journal of Parasitology. 2020; 14 (1): 81–88. (In Russ.) https:// doi.org/10.31016/1998-8435-2020-14-1-81-88
2. Kolesova G. G., Reshetnikov A. D., Sleptsov E. S., Barashkova A. I. Dirofilariosis of carnivorous in Yakutia, the method of isolation filarial larvae from the blood of dogs. Rossiyskiy parazitologicheskiy zhurnal = Russian Journal of Parasitology. 2013; 3: 87-91. (In Russ.)
3. Molchanova E. V., Luchinin D. N., Negodenko A. O., Prilepskaya D. N., Borodai N. V., Konovalov P. Sh., Karunina I. V., Kolyakina N. N., Viktorov D. V. Surveillance studies of mosquito-borne arbovirus infections in the Volgograd Region. Zdorov'ye naseleniya i sreda obitaniya = Population Health and Habitat. 2019; No. 6 (315): 60-66. (In Russ.)
4. Nikanorova A. M. Analytical mathematical modeling of mosquito population in the Kaluga Region. Veterinarnaya patologiya = Veterinary Pathology. 2020; 4 (74): 12-16. (In Russ.) https://doi.org/10.25690/VETPAT.2020.34.74.004
5. Khalin A. V., Gornostaeva R. M. The taxonomic composition of blood-sucking mosquitoes (Diptera: Culicidae) of the global and Russian fauna (critical review). Parazitologija = Parasitology. 2008; 42 (5): 360-381. (In Russ.)
6. Shaikevich E. V., Ganushkina L. A. Wolbachia bacteria and filarial nematodes: mutual benefit and the Achilles’ heel of the parasite. Advances in modern biology. 2018; 138 (2): 161-171. (In Russ.)
7. Alam K. E., Rahman M.S., Hasan M.M., Huq M.R., Islam M.T. Temporal trends, SARIMA forecasting of Dengue, and the influence of Dengue-related meteorological factors in Bangladesh: a time series analysis. medRxiv. 2025; С. 2025.04. 09.25325511. https://doi.org/10.1101/2025.04.09.25325511
8. Box G. E. P., Jenkins G. M., Reinsel G. C. Time Series Analysis: Forecasting and Control (4th ed.). Wiley. 2008.
9. Chitnis N., Smith T., Steketee R. A mathematical model for the dynamics of malaria in mosquitoes feeding on a heterogeneous host population. Journal of biological dynamics. 2008; 2 (3): 259-285. https://doi.org/10.1080/17513750701769857
10. Covelo G. Analisi di metodi e modelli di apprendimento per l'identificazione della malaria. 2019; 23-45.
11. Hernandez-Valencia J. C., Martinez-Vega R. A., Carrillo-Hernandez D., Ruiz-Gomez F., TiqueAcuna V., Navarro-Lechuga E. A systematic review on the viruses of Anopheles mosquitoes: the potential importance for public health. Tropical Medicine and Infectious Disease. 2023; 8 (10): 459. https://doi.org/10.3390/tropicalmed8100459
12. Hyndman R. J., Athanasopoulos G. Forecasting: principles and practice. OTexts, 2018.
13. Kweyamba P. A., Mpelepele G., Kavishe R. A., Mandara C. I., Kweka E. J. Contrasting vector competence of three main East African Anopheles malaria vector mosquitoes for Plasmodium falciparum. Scientific Reports. 2025; 15 (1): 2286. https://doi.org/10.1038/s41598-024-56789-6
14. Reiner Jr R. C., Perkins T. A., Barker C. M., Niu T., Chaves L. F., Ellis A. M., George D. B., Le Menach A., Pulliam J. R. C., Bisanzio D., Buckee C., Chiyaka C., Cummings D. A. T., Garcia A. J., Gatton M. L., Gething P. W., Hartemink N. A., Johnston G., Klein E. Y., Michael E., Lloyd A. L., Pigott D. M., Reisen W. K., Ruktanonchai N., Singh B. K., Stoller J., Tatem A. J., Kitron U., Hay S. I., Scott T. W., Smith D. L. A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010. Journal of The Royal Society Interface. 2013; 10 (81):20120921. https://doi.org/10.1098/rsif.2012.0921
Review
For citations:
Vasilevich F.I., Nikanorova A.M., Kalmykov V.V. Forecasting the mosquito population in the Kaluga Region using a time series analysis. Russian Journal of Parasitology. 2025;19(4):446-455. (In Russ.) https://doi.org/10.31016/1998-8435-2025-19-4-446-455
JATS XML





































