Improving the treatment efficacy in horses against strongylatosis using supramolecular complexes of fenbendazole
https://doi.org/10.31016/1998-8435-2025-19-3-372-384
Abstract
The purpose of the research is to obtain solid dispersions (SD) of fenbendazole (FBZ) with polyvinylpyrrolidone (PVP), arabinogalactan (AG) or licorice extract (LE) using mechanochemical methods; to obtain the corresponding supramolecular complexes (SMC) by dissolving the SD in water and to study their anthelmintic activity against strongylatosis in equines; and to determine their prolonged action versus the basic FBZ preparation.
Materials and methods. SMCs were prepared by dissolving in water of the corresponding SD of FBZ and polymeric substances of the following formulations: FBZ : PVP : LE (10 : 45 : 45) and FBZ : PVP : AG (10 : 45 : 45). The obtained SMCs were studied on 72 horses infected with Strongylata. The experimental horses were divided into two groups (n = 42, and n = 30). The animals were given the FBZ SMC : PVP : AG or FBZ SMC : PVP : LE at doses of 3 and 5 mg/kg by the active substance (AS) and the basic FBZ (7.5 mg/kg by the AS). The anthelmintic effect was determined by the number of helminth eggs in 1 g of feces (NHE), the reduction in the number of eggs (RNE,%), and the number of cured animals (NCA, %) within 105 days after deworming. Statistical analysis was performed with the Kruskal-Wallis and Mann-Whitney tests.
Results and discussion. Two weeks after deworming, the RNE in the experimental groups of SMC FBZ : PVP: AG and SMC FBZ : PVP: LE reached 97.92–100%, and 66.74% in the positive control group that was given FBZ. Subsequently, the efficacy decreased, but by week 15, the SMC FBZ : PVP : AG (5 mg/kg) group remained with the RNE of 91.14%, while this rate was 85.19 and 13.78% in the FBZ : PVP : LE (5 mg/kg) and FBZ groups, respectively. The analysis showed statistically significant differences between FBZ SMC and basic FBZ (P < 0.05) in favor of a higher and longer-lasting anthelmintic efficacy of the complexes. Differences between the FBZ : PVP : AG and the FBZ : PVP : LE were not detected at week 2 (P > 0.05), however, at weeks 8 and 15, the SMC FBZ : PVP : AG showed better anthelmintic effects (P < 0.05).
Keywords
About the Authors
O. V. DemkinaRussian Federation
Demkina Olga V., Candidate of Veterinary Sciences, Associate Professor of the Department of Veterinary-Sanitary Examination, Epizootology and Microbiology
Blagoveshchensk
M. S. Khalikov
Russian Federation
Khalikov Marat S., Researcher of the Laboratory of Physiologically Active Fluoroorganic Compounds
Scopus ID: 602304510
Moscow
S. S. Khalikov
Russian Federation
Khalikov Salavat S., Doctor of Technical Sciences, Leading Researcher of the Laboratory of Physiologically Active Fluoroorganic Compounds
Researcher ID: T-2164-2018
Scopus ID: 57190865687
Moscow
A. I. Varlamova
Russian Federation
Varlamova Anastasia I., Doctor of Biological Sciences, Leading Researcher of the Laboratory of Experimental Therapy
Researcher ID: F-9941-2014
Scopus ID: 56612429800
Moscow
T. T. Tursunov
Kyrgyzstan
Tursunov Talgat T., Doctor of Veterinary Sciences, Head of the Laboratory of Parasitology
Bishkek
References
1. Arkhipov I. A. Anthelmintics: Pharmacology and Application. Moscow: Russian Academy of Agricultural Sciences, 2009; 47–55. (In Russ.)
2. Arkhipov I. A., Varlamova A. I., Khalikov S. S., Sadov K. M., Dushkin A. V. The Influence of Mechanochemical Technology on Anthelmintic Efficacy of Supramolecular Complexes of Fenbendazole with Licorice Extract. Rossiyskiy parazitologicheskiy zhurnal = Russian Journal of Parasitology. 2020; 14 (1): 70-74. (In Russ.) https://doi.org/10.31016/1998-8435-2020-14-1-70-74
3. Varlamova A. I., Arkhipov I. A., Khalikov S. S., Sa-dov K. M. Efficiency of Fenbendazole on the Basis of Nanosized Supramolecular Delivery Systems with Polyvinyl Pyrrolidone and Dioctylsulphosuccinate Sodium in the Cases of Helminthosis. Rossiyskiy parazitologicheskiy zhurnal = Russian Journal of Parasitology. 2019; 13 (1): 56-63. (In Russ.) https://doi.org/10.31016/1998-8435-2019-13-1-56-63
4. Varlamova A. I., Limova Yu. V., Sadov K. M., Sado-va A. K., Belova E. E., Radionov A. V., Khalikov S. S., Chistyachenko Yu. S., Dushkin A. V., Skira V. N., Arkhipov I. A. Efficacy of the supramolecular complex of fenbendazole against nematodiasis in sheep. Rossiyskiy parazitologicheskiy zhurnal = Russian Journal of Parasitology. 2016; 35 (1): 76–81. (In Russ.)
5. Varlamova A. I., Movsesyan S. O., Arkhipov I. A., Khalikov S. S., Arisov M. V., Kochetkov P. P., Abramov V. E., Ilyin M. M., Loshkin B. V. Biological Activity and Pharmacokinetic Features of Fenbendazole Based on a Supramolecular Targeted Delivery System with Licorice Extract and Sodium Dioctylsulfosuccinate. Izvestiya Rossiyskoy akademii nauk. Seriya biologicheskaya = Proceedings of the Russian Academy of Sciences. Biological Series. 2020; (6): 565–574. (In Russ.) https://doi.org/10.31857/S0002332920060132
6. Varlamova A. I., Arkhipov I. A., Sadov K. M., Khalikov S. S., Arisov M. V., Borzunov E. N. Efficacy of solid dispersion of fenbendazole against gastrointestinal strongylatosis of young cattle. Rossiyskiy parazitologicheskiy zhurnal = Russian Journal of Parasitology. 2021; 15 (1): 92-97. (In Russ.) https://doi.org/10.31016/1998-8435-2021-15-1-92-97
7. Demkina O. V. Effectiveness of Fenbendazole in Cyathostominosis in the Amur Region. «Teoriya i praktika bor'by s parazitarnymi boleznyami»: sbornik nauchnykh statey po materialam mezhdunarodnoy nauchnoy konferentsii = «Theory and Practice of Fighting Parasitic Diseases»: collection of scientific articles based on the materials of the international scientific conference. 2024; 25: 114-118. (In Russ.) https://doi.org/10.31016/978-5-6050437-8-2.2024.25.114-118
8. Medvedeva E. N., Babkin V. A., Ostroukhova L. A. Larch Arabinogalactan: Properties and Prospects for Use (Review). Khimiya rastitel'nogo syr'ya = Chemistry of Plant Raw Material. 2003; 1: 27-37. (In Russ.)
9. Musaev M. B., Zashchepkina V. V., Gadayev Kh. Kh., Shakhbiyev Kh. Kh. Commission test of the efficacy of the supramolecular complex of ivermectin against gastrointestinal strongylatoses of horses. Rossiyskiy parazitologicheskiy zhurnal = Russian Journal of Parasitology. 2021; 15 (2): 101-106. (In Russ.) https://doi.org/10.31016/1998-8435-2021-15-2-101-106
10. Panova O. A., Arkhipov I. A., Baranova M. V., Khrustalev A. V. Problem of anthelmintic resistance in horse breeding. Rossiyskiy parazitologicheskiy zhurnal = Russian Journal of Parasitology. 2022; 16 (2): 230–242. (In Russ.) https://doi.org/10.31016/1998-8435-2022-16-2-230-242
11. Panova O. A., Kurnosova O. P., Khrustalev A. V., Arisov M. V. Methods of coprological diagnostics of animal parasitoses. Rossiyskiy parazitologicheskiy zhurnal = Russian Journal of Parasitology. 2023; 17 (3): 365-377. (In Russ.) (In Russ.) https://doi.org/10.31016/1998-8435-2023-17-3-365-377
12. Khalikov S. S., Evseenko V. I., Varlamova A. I., Khalikov M. S., Ilyin M. M., Meteleva E. S., Arkhi-pov I. A. Obtaining complex anthelminthic drugs by methods of mechanochemistry. Mezhdunarodnyy zhurnal prikladnykh i fundamental'nykh issledovaniy = International Journal of Applied and Basic Research. 2023; 2: 44-52. (In Russ.) https://doi.org/10.17513/mjpfi.13512
13. Abd-Elgawad M. M. M. Towards sound use of statistics in nematology. Bulletin of the National Research Centre. 2021; 45 (1). https://doi.org/10.1186/s42269-020-00474-x
14. Cai Enjia, Wu Rongzheng, Wu Yuhong, Gao Yu, Zhu Yiping, Li Jing. A systematic review and meta-analysis on the current status of anthelmintic resistance in equine nematodes: A global perspective. Molecular and Biochemical Parasitology. 2024; 257:111600. https://doi.org/10.1016/j.molbiopara.2023.111600
15. Cernea M., Carvalho L. M. M., Cozma V., Cernea L., Raileanu S., Silberg R., Gut A. Atlas of diagnosis of equine strongylidosis. Edutura Academic Pres. 2008; 120.
16. Lu M., Wei W., Xu W., Polyakov N. E., Dush-kin A. V., Su W. Preparation of DNC Solid Dispersion by a Mechanochemical Method with Glycyrrhizic Acid and Polyvinylpyrrolidone to Enhance Bioavailability and Activity. Polymers. 2022; 14 (10): 2037. https://doi.org/10.3390/polym14102037
17. Nielsen M. K. Anthelmintic resistance in equine nematodes: Current status and emerging trends. International Journal for Parasitology: Drugs and Drug Resistance. 2022; 20: 76-88. https://doi.org/10.1016/j.ijpddr.2022.10.005
18. Nielsen M. K., von Samson-Himmelstjerna G., Kuzmina T. A., van Doorn D. V., Meana A., Rehbein S., Elliott T., Reinemeyer C. World association for the advancement of veterinary parasitology (WAAVP): Third edition of guideline for evaluating the efficacy of equine anthelmintics. Veterinary Parasitology. 2022; 303: 109676. https://doi.org/10.1016/j.vetpar.2022.109676
19. Khalikov S. S. Mechanochemical technology for regulation of the solubility of anthelmintic drugs by using Polymers. INEOS OPEN. 2021; 4 (2): 53–60. https://doi.org/10.32931/io2108r
20. Sun Y., Chen D., Pan Y., Qu W., Hao H., Wang X., Liu Zh., Xie Sh. Nanoparticles for antiparasitic drug delivery. Drug Delivery. 2019; 26 (1): 1206–1221. https://doi.org/10.1080/10717544.2019.1692968
Review
For citations:
Demkina O.V., Khalikov M.S., Khalikov S.S., Varlamova A.I., Tursunov T.T. Improving the treatment efficacy in horses against strongylatosis using supramolecular complexes of fenbendazole. Russian Journal of Parasitology. 2025;19(3):372-384. (In Russ.) https://doi.org/10.31016/1998-8435-2025-19-3-372-384