Preview

Russian Journal of Parasitology

Advanced search

Helminthosis in horses in the Amur region: correlation and regression analysis of the influence of housing system and weather factors

https://doi.org/10.31016/1998-8435-2025-19-4-435-445

Abstract

The purpose of the research is to evaluate the influence of housing system, season, and weather conditions on the fecal egg count of gastrointestinal nematodes in horses in the Amur Region of the Russian Far East from 2021 to 2024.

Materials and methods. A total of 1,494 fecal samples were collected from 212 horses kept on permanent pasture (three farms) or in stalls with daily grazing (four farms). Eggs of Strongylata spp., Parascaris equorum, and Oxyuris equi were counted using the McMaster method. Average monthly air temperature, relative humidity, and precipitation were obtained from the Hydrometeorological Center of Russia. Egg counts were log-transformed [log₁₀(EPG + 1)]. Preliminary relationships were examined using Spearman's rank correlation. Determinants of Strongylata spp. egg shedding were estimated using ordinary least squares regression with cluster-robust (HC1) standard errors for the farm factor (n = 7).

Results and discussion. Strongylata spp. nematodes were nearly ubiquitous (99% of horses), while P. equorum and O. equi were present in 24% and 8% of horses, respectively. Pasture grazing increased the log FEC of Strongylata spp. By 0.29±0.06 (1.9 times increase; P < 0.001) and autumn sampling by 0.22±0.05 (1.6 times increase; P < 0.001) compared to spring sampling. Each 1 оC increase in mean monthly temperature added 0.035±0.009 log units (P < 0.001). Humidity and precipitation showed no independent effects after adjustment. No significant relationship with weather conditions was found for P. equorum or O. equi. Therefore, continuous grazing combined with warm weather conditions is the main risk factor for Strongylata spp. infection. To improve control and reduce unnecessary winter treatments, strategic deworming in April and September, combined with selective therapy, is recommended.

About the Authors

F. I. Vasilevich
Moscow State Academy of Veterinary Medicine and Biotechnology (MVA named after K. I. Skryabin
Россия

Vasilevich Fedor I., Doctor of Veterinary Sciences, Professor, Academician of the Russian Academy of Sciences

Moscow



O. V. Demkina
Far Eastern State Agrarian University
Россия

Demkina Olga V., Candidate of Veterinary Sciences, Associate Professor of the Department of Veterinary-Sanitary Examination, Epizootology and Microbiology

Blagoveshchensk



A. M. Nikanorova
Kaluga State University named after K. E. Tsiolkovsky
Россия

Nikanorova Anna M., Doctor of Veterinary Sciences, Associate Professor

Kaluga



V. V. Kalmykov
Bauman Moscow State Technical University (National Research University)
Россия

Kalmykov Vadim V.

Moscow



References

1. Vasilevich F. I., Kalmykov V. V., Nikanorova A. M., Koroleva E. V. Mathematical modeling of ixodid ticks depending on three climatic factors. IOP Conference Series: Earth and Environmental Science. 2021. Vol. 677. 032009. https://doi.org/10.1088/1755-1315/677/032009

2. Hydrometeorological Center of Russia. Archive of meteorological observations. URL: https://meteoinfo.ru/ (date of access: 12.06.2025).

3. Demkina O. V., Bondarenko G. A., Trukhina T. I. Helminthiasis of horses in the Amur region. Ippologiya i veterinariya = Ippology and Veterinary Science. 2024; 3 (53): 7-13. (In Russ.) https://doi.org/10.52419/2225-1537.2024.3.7-13

4. Kalugina E. G., Stolbova O. A. Epizootic aspects of helminthiasis in horses in the Tyumen region. Veterinarnaya patologiya = Veterinary pathology. 2023; 22 (1): 55-62. (In Russ.) https://doi.org/10.23947/1682-5616-2023-22-55-62

5. Panova O. A., Kurnosova O. P., Khrustalev A. V., Arisov M. V. Methods of coprological diagnostics of animal parasitosis. Rossiyskiy parazitologicheskiy zhurnal = Russian Journal of Parasitology. 2023;17 (3): 365–377. (In Russ.). https://doi.org/10.31016/1998-8435-2023-17-3-365-377

6. Timerbaeva R. R., Latypov D. G., Bikbova S. I. Helminthosis of Horses. Uchonyye zapiski Kazanskoy akademii veterinarnoy meditsiny im. N. E. Baumana = Scientific Notes of the Kazan Academy of Veterinary Medicine named after N. E. Bauman. 2020; 243 (3): 254-257. https://doi.org/10.31588/2413-4201-1883-243-3-254-257

7. Harris C. R., Millman K. J., van der Walt S. J., Gommers R., Virtanen P., Cournapeau D., Wieser E., Taylor J., Berg S., Smith N. D., Kern R., Picus M., Hoyer S., van Kerkwijk M. H., Brett M., Haldane A., del Río J. F., Wiebe M., Peterson P., Gérard-Marchant P., Sheppard K., Reddy T., Weckesser W., Abbasi H., Gohlke C., Oliphant T. E. Array programming with NumPy. Nature. 2020; 585: 357-362. https://doi.org/10.1038/s41586-020-2649-2

8. Hunter J. D. Matplotlib: A 2D graphics environment. Computing in Science & Engineering. 2007; 9 (3): 90-95. https://dx.doi.org/10.1109/MCSE.2007.55

9. Kuzmina T. A., Königová A., Antipov A. et al. Changes in equine strongylid communities after two decades of annual anthelmintic treatments at the farm level. Parasitology Research. 2024; 123: 394. https:// doi.org/10.1007/s00436-024-08417-5

10. Leathwick D. M., Sauermann C. W., Reinemeyer C. R., Nielsen M. K. A model for the dynamics of the parasitic stages of equine cyathostomins. Veterinary Parasitology. 2019; 268: 53-60. https://doi.org/10.1016/j.vetpar.2019.03.004

11. McKinney W. Data structures for statistical computing in Python. Proceedings of the 9th Python in Science Conference. Austin, 2010; 51-56. https://doi.org/10.25080/Majora-92bf1922-00a

12. Nielsen M. K., Pyatt A., Perrett J., Tydén E., van Doorn D., Pihl T. H., Schmidt J. S., von SamsonHimmelstjerna G., Beasley A., Abbas G., Jabbar A. Global equine parasite control guidelines: Consensus or confusion? International Journal of Parasitology: Drugs and Drug Resistance. 2025; 28: 100600. https://doi.org/10.1016/j.ijpddr.2025.100600

13. Nielsen M. K., Sauermann C. W., Leathwick D. M. The effect of climate, season, and treatment intensity on anthelmintic resistance in cyathostomins: A modelling exercise. Veterinary Parasitology. 2019; 269: 7-12. https://doi.org/10.1016/j.vetpar.2019.04.003

14. Nielsen M. K., Leathwick D. M., Sauermann C. W. Shortened strongylid egg reappearance periods in horses following macrocyclic lactone administration – The impact on parasite dynamics. Veterinary Parasitology. 2023; 320: 109977. https://doi.org/10.1016/j.vetpar.2023.109977

15. Seabold S., Perktold J. Statsmodels: Econometric and statistical modeling with Python. Proceedings of the 9th Python in Science Conference. Austin, 2010; 57-61. https://doi.org/10.25080/Majora-92bf1922-011

16. Tukey J. W. Exploratory Data Analysis. AddisonWesley Publishing Company Reading, Mass. – Menlo Park, Cal., London, Amsterdam, Don Mills, Ontario, Sydney 1977; XVI, 688 S. https://doi.org/10.1002/ bimj.4710230408

17. Van Rossum G., Drake F. L. Python 3 Reference Manual. Seattle: CreateSpace, 2009; 1264.

18. Vasilevich F. I., Kalmykov V. V., Nikanorova A. M., Koroleva E. V., Engasheva E. S. Analytical and computational mathematical models of the mosquito population in the middle zone of the Russian Federation. IOP Conference Series: Earth and Environmental Science. 2021; 913: 012202. https://doi.org/10.1088/1755-1315/913/012202

19. Vasilevich F. I., Kalmykov V. V., Nikanorova A. M., Koroleva E. V., Grossman M. F. Regression mathematical models of the number of small mammals in the Kaluga region of the Russian Federation. IOP Conference Series: Earth and Environmental Science. 2021; 677: 012210. https://doi.org/10.1088/1755-1315/677/012210

20. Virtanen P., Gommers R., Oliphant T. E., Haberland M., Reddy T., Cournapeau D., Burovski E., Peterson P., Weckesser W., Bright J., van der Walt S. J., Brett M., Wilson J., Millman K. J., Mayorov N., Nelson A. R. J., Jones E., Kern R., Larson E., Carey C. J., Polat İ., Feng Y., Moore E. W., VanderPlas J., Laxalde D., Perktold J., Cimrman R., Henriksen I., Quintero E. A., Harris C. R., Archibald A. M., Ribeiro A. H., Pedregosa F., van Mulbregt P. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods. 2020; 17: 261-272. https://doi.org/10.1038/s41592-019-0686-2

21. Waskom M. L. Seaborn: statistical data visualization. Journal of Open Source Software. 2021; 6 (60): 3021. https://doi.org/10.21105/joss.03021


Review

For citations:


Vasilevich F.I., Demkina O.V., Nikanorova A.M., Kalmykov V.V. Helminthosis in horses in the Amur region: correlation and regression analysis of the influence of housing system and weather factors. Russian Journal of Parasitology. 2025;19(4):435-445. (In Russ.) https://doi.org/10.31016/1998-8435-2025-19-4-435-445

Views: 111

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-8435 (Print)
ISSN 2541-7843 (Online)