Possibilities of using nested PCR-RFLP for taxonomic identification of L3 larvae of the family Trichostrongylidae, Leiper, 1912
https://doi.org/10.31016/1998-8435-2024-18-3-264-273
Abstract
The purpose of the research is to apply molecular genetic research methods to identify the taxonomic affiliation of gastrointestinal parasitic sheep nematodes of the family Trichostrongylidae using nested PCR followed by the restriction fragment length polymorphism (RFLP) analysis.
Materials and methods. Parasitic nematodes, L3 Strongylata larvae obtained from incubated fecal samples of sheep. The genomic DNA was isolated using a commercial kit for DNA extraction from micro-quantities of tissues (Synthol, Moscow) as per the manufacturer’s guidelines. For DNA amplification, a T-100 Bio-Rad thermal cycler and a commercial Eurogen Master Mix reagent kit were used. The PCR regime was performed according to the WAAVP guidelines, 2006. The restriction endonuclease Rsa I of amplified Trichostrongylidae fragments was performed according to guidelines of the enzyme manufacturer (Sibenzyme, Novosibirsk).
Results and discussion. To determine the taxonomic affiliation of Strongylata larvae isolated after incubation of feces from sheep, molecular genetic studies were performed using nested PCR followed by the restriction fragment length polymorphism (RFLP) analysis. This method makes it possible to identify, with the least effort, the genotypes of three species of Strongylata Haemonchus contortus, Trichostrongylus colubriformis, and Teladorsagia circumcincta at the larval stage.
Keywords
About the Authors
I. A. PimenovRussian Federation
Pimenov Ilya A., Postgraduate Student
28, Bolshaya Cheremushkinskaya st., Moscow, 117218
I. M. Odoevskaya
Russian Federation
Odoevskaya Irina M., Candidate of Biological Sciences
28, Bolshaya Cheremushkinskaya st., Moscow, 117218
A. M. Plieva
GDR
Plieva Aishet M., Doctor of Biological Sciences, Corresponding Member of the International Academy of Ecology & Life Protection Sciences
I. B. Zyazikova Ave., Magas, Republic of Ingushetia, 386001
A. I. Varlamova
Russian Federation
Varlamova Anastasiya I., Doctor of Biological Sciences
28, Bolshaya Cheremushkinskaya st., Moscow, 117218
References
1. Ivashkin V. M., Oripov A. O., Sonin M. D. Identification guide to helminths of small ruminants. M.: Science, 1989; 255. (In Russ.)
2. Nikitin V. F., Pavlasek I., Copyright certificate of the USSR No. 1095908, pc. A 61 В 10/10, 1981. SU 1 391 625 A1
3. Pimenov I. A., Kuznetsov D. N., Odoevskaya I. M., Afanasyev A. D., Varlamova A. I., Arkhipov I. A. To the fauna of gastrointestinal nematodes of sheep in the European part of Russia. Rossiyskiy parazitologicheskiy zhurnal = Russian Journal of Parasitology. 2023; 17 (2): 206–213. (In Russ.) https:// doi.org/10.31016/1998-8435-2023-17-2-206-213
4. Álvarez-Sánchez M. A., Pérez-García J., Cruz-Rojo M. A., Rojo-Vázquez F. A. Real time PCR for the diagnosis of benzimidazole resistance in trichostrongylids of sheep. Veterinary Parasitology. 2005; 129 (3–4): 291-298. https://doi.org/10.1016/j.vetpar.2005.02.004
5. Baltrušis A., Claude L. Halvarsson P., Mikko S., Höglund J. Using droplet digital PCR for the detection of hco-acr-8b levamisole resistance marker in H. contortus. International Journal for Parasitology: Drugs and Drug Resistance. 2021; 15. 168-176. https://doi.org/10.1016/j.ijpddr.2021.03.002
6. Baltrušis A., Halvarsson P., Höglund J., Exploring benzimidazole resistance in Haemonchus contortus by next generation sequencing and droplet digital PCR. International Journal for Parasitology: Drugs and Drug Resistance. 2018; 8 (3): 411-419. https:// doi.org/10.1016/j.ijpddr.2018.09.003
7. Charlier J., Rinaldi L., Musella V., Ploeger H. W., Chartier C., Vineer H. R., Hinney B., Samson-Himmelstjerna G., Ba ̆cescu B., Mickiewicz M. Initial assessment of the economic burden of major parasitic helminth infections to the ruminant livestock industry in Europe. Preventive Veterinary Medicine. 2020; 182. 105103. https://doi.org/10.1016/j.prevetmed.2020.105103
8. Coles G. C., Jackson F., Pomroy W. E., Prichard R. K., von Samson-Himmelstjerna G., Silvestre A., Taylor M. A., Vercruysse J. The detection of anthelmintic resistance in nematodes of veterinary importance. Veterinary Parasitology. 2006; 31; 136 (3-4): 167- 185. https://doi.org/10.1016/j.vetpar.2005.11.019
9. Dilks C. M., Hahnel S. R., Sheng Q., Long L., McGrath P. T., Andersen E. C. Quantitative benzimidazole resistance and fitness effects of parasitic nematode beta- tubulin alleles. International Journal for Parasitology: Drugs and Drug Resistance. 2020; 14. 28–36. https://doi.org/10.1016/j.ijpddr.2020.08.003
10. Dobson R. J., Hosking B. C., Jacobson C. L., Cotter J. L., Besier R. B., Stein P. A., Reid S. A. Preserving new anthelmintics: a simple method for estimating faecal egg count reduction test (FECRT) confidence limits when efficacy and/or nematode aggregation is high. Veterinary Parasitology. 2012; 186. 79–92. https://doi.org/10.1016/j.vetpar.2011.11.049
11. Gasser R. B. PCR-based technology in veterinary parasitology. Veterinary Parasitology. 1999. 84. 229–258. https://doi.org/10.1016/s0304-4017(99)00036-9
12. Hinney B., Wiedermann S., Bosco A., Rinaldi L., Hofer M., Joachim A., Krücken J., Steinborn R. Development of a three-colour digital PCR for early and quantitative detection of benzimidazole resistance-associated single nucleotide polymorphisms in Haemonchus contortus. International Journal for Parasitology: Drugs and Drug Resistance. 2023; 22. 88-95. https://doi.org/10.1016/j.ijpddr.2023.06.001
13. Humbert J. F., Elard L. A simple PCR method for rapidly detecting defined point mutations. Journal: Technical Tips Online. 1997; ISSN: 1366-2120.
14. Kaplan R. M. Biology, epidemiology, diagnosis, and management of anthelmintic resistance in gastrointestinal nematodes of livestock. Veterinary Clinics: Food Animal Practice. 2020; 36 (1): 17–30. https://doi.org/10.1016/j.cvfa.2019.12.001
15. Kaplan R. M., Denwood M. J., Nielsen M. K., Thamsborg S. M., Torgerson P. R., Gilleard J. S., Dobson R. J., Vercruysse J., Levecke B. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) guideline for diagnosing anthelmintic resistance using the faecal egg count reduction test in ruminants, horses and swine. Veterinary Parasitology. 2023; 318. https://doi.org/10.1016/j.vetpar.2023.109936
16. Kotze A. C., Gilleard J. S., Doyle S. R., Prichard R. K. Challenges and opportunities for the adoption of molecular diagnostics for anthelmintic resistance. International Journal for Parasitology: Drugs and Drug Resistance. 2020; 14. 264–273. https://doi.org/10.1016/j.ijpddr.2020.11.005
17. Kotze A. C., Prichard R. Anthelmintic resistance in Haemonchus contortus: history, mechanisms and diagnosis. Advances in Parasitology. 2016; 93. 397–428. https://doi.org/10.1016/bs.apar.2016.02.012
18. Lancaster M. B., Hong C. Differentiation of third stage larvae of “ovine Ostertagia” type and Trichostrongylus species. The Veterinary Record. 1987; 120. 503. http://doi.org/10.1136/vr.120.21.503, PMid:3604011
19. O’Callaghan M. G. Observations on the sheath extension of the third stage, infective larvae of Trichostrongylus rugatus. Veterinary Parasitology. 2004; 126. 397–402. http://doi.org/10.1016/j.vetpar.2004.07.027
20. Prichard R. Application of molecular biology in veterinary parasitology. Veterinary Parasitology. 1997; 71. 155–175. https://doi.org/10.1016/s0304-4017(97)00029-0
21. Rajagopal A., Sabu L., Radhika R., Devada K., Jain Jose K., Thomas N., Aravindakshan T. V. Development of PCR-RFLP for the detection of benzimidazole resistance polymorphisms in isotype 1 β-tubulin gene of Trichostrongylus colubriformis. Small Ruminant Research. 2023. 222. 106954. https://doi.org/10.1016/j.smallrumres.2023.106954.
22. Rossanigo C. E., Gruner L. The length of strongylid nematode infective larvae as a reflection of developmental conditions in faeces and consequence on their viability. Parasitology Research. 1996; 82. 304–311. http://doi.org/10.1007/s004360050118, PMid:8740545
23. Santos J. M. L., Vasconcelos J. F., Frota G. A., Freitas E. P., Teixeira M., Vieira L. S., Bevilaqua C. M. L., Monteiro J. P. Quantitative molecular diagnosis of levamisole resistance in populations of Haemonchus contortus. Experimental Parasitology. 2019; 205. 107734. https://doi.org/10.1016/j.exppara.2019.107734
24. Silvestre A., Humbert J.-F. A Molecular Tool for Species Identification and Benzimidazole Resistance Diagnosis in Larval Communities of Small Ruminant Parasites. Experimental Parasitology. 2000; 95 (4): 271–276. https://doi.org/10.1006/expr.2000.4542
25. Smits H. L., Hartskeerl R. A. PCR amplification reactions in parasitology. Journal of Microbiological Methods. 1995; 23. 41–54.
26. Van Wyk J. A., Cabaret J., Michael L. M. Morphological identification of nematodes of small ruminants and cattle simplified. Veterinary Parasitology. 2004; 119. 277–306. http://doi.org/10.1016/j.vetpar.2003.11.012
27. Van Wyk J. A., Mayhew E. Morphological identification of parasitic nematode infective larvae of small ruminants and cattle: A practical lab guide. Onderstepoort Journal of Veterinary Research. 2013; 80 (1): 14. http:// doi.org/10.4102/ojvr. v80i1.539
28. Weiss J. B. DNA probes and PCR for diagnosis of parasitic infections. Clinical Microbiology Reviews. 1995; 8. 113–130. https://doi.org/10.1128/CMR.8.1.113
Review
For citations:
Pimenov I.A., Odoevskaya I.M., Plieva A.M., Varlamova A.I. Possibilities of using nested PCR-RFLP for taxonomic identification of L3 larvae of the family Trichostrongylidae, Leiper, 1912. Russian Journal of Parasitology. 2024;18(3):264-273. (In Russ.) https://doi.org/10.31016/1998-8435-2024-18-3-264-273