Influence of insectocompost obtained by cultivation of the during beetle Ulomoides dermestoides on the ecological-trophic composition and development of soil and phytoparasitic nematodes
https://doi.org/10.31016/1998-8435-2024-18-1-87-99
Abstract
The purpose of the research is to study the effect of insect compost obtained as a result of the vital activity of insects of the Coleoptera order Ulomoides dermestoides on the quantitative and qualitative composition of soil nematodes of various ecological and trophic groups, as well as on the morphological and physiological state of plants and infection of tomato plants with root-knot nematodes.
Materials and methods. Under laboratory conditions, soil containing a diverse fauna of nematodes was treated with 1% dry and 0.5; 0.75 and 1% aqueous solutions of biocompost. Insect compost was obtained by keeping the U. dermestoides on a dry nutrient mixture. Then a mixture of lawn grasses was sown in the ground. After 30 days, the composition of nematodes was analyzed. The ability of insect compost to suppress parasitic nematode species was studied using the tomato-knot nematode model system. Tomatoes were infected with Meloidogyne incognita at a rate of 500 larvae (J2) per plant and simultaneously treated with a 0.5% aqueous biocompost solution.
Results and discussion. The insect compost U. dermestoides has an effect on quantitative and qualitative indicators in the community of soil nematodes, increasing the number of predatory and saprobiotic nematodes and displacing parasitic ones. And due to the content of various biologically active compounds, it affects the development of rootknot nematodes in tomato roots. When tomatoes are treated with an aqueous solution of insect compost, the infection score and the number of nematodes that penetrate the roots are reduced. The introduction of compost when growing a mixture of lawn grasses and tomatoes can improve the condition of the plants.
Keywords
About the Authors
Zh. V. UdalovaRussian Federation
Udalova Zhanna V., PhD in biol. sc.
28, Bolshaya Cheremushkinskaya st., Moscow, 117218
33, Russia, Leninsky pr, Moscow, 119071
N. N. Butorina
Russian Federation
Butorina Natalia N., PhD in biol. sc.
33, Russia, Leninsky pr, Moscow, 119071
N. A. Ushakova
Russian Federation
Ushakova Nina A., Doctor of Biol. Sci.
33, Russia, Leninsky pr, Moscow, 119071
S. V. Zinovieva
Russian Federation
Zinovieva Svetlana V., Doctor of Biol. Sci.
33, Russia, Leninsky pr, Moscow, 119071
References
1. Gruzdeva L. I., Matveeva E. M., Kovalenko T. E., Sushchuk A. A. Nematodes as indicators of the state and degree of changes in the soil ecosystem in the conditions of North-West Russia. Advances in modern biology. 2010; 130 (1): 100-112. (In Russ.)
2. Cherney L. S., Svalyavchuk L. I. Peculiarities of development of Ulomoides dermestoides (Chevrolat, 1878) (Coleoptera, Tenebrionidae) on compound feed used in broiler poultry farming and instant cereals. Scientific evidence from the NUBP of Ukraine. 2018; 71 (1): 16.
3. Abdel-Rahman F. H., Alaniz N.M., Saleh M.A. Nematicidal activity of terpenoids. Journal of Environmental Science and Health B. 2013; 48 (1): 16-22. https://doi.org/10.1080/03601234.2012.716686
4. Ahmad G., Khan A., Khan A. A., Ali A., Mohhamad H. I. Biological control: a novel strategy for the control of the plant parasitic nematodes. Antonie van Leeuwenhoek. 2021; 114: 885–912. https://doi.org/10.1007/s10482-021-01577-9
5. Assessment of soil biodiversity policy instruments in EU-27. Final report. February 2010. European Commission DG ENV. Bio Intelligence Service. 232.
6. Attygalle A. B., Blankespoor C. L., Meinwald J., Eisner T. Defensive secretion of Tenebrio molitor (Coleoptera: Tenebrionidae). Journal of Chemical Ecology. 1991; 17: 805–809.
7. Attygalle A. B., Xu S. C., Meinwald J. & Eisner T. Defensive secretion of the millipede Floridobolus penneri. Journal of Natural Products. 1993; 56: 1700-1706.
8. Barron G. L. Lignolytic and cellulolytic fungi as predators and parasites. In: Carroll G. C., Wicklow D. T. (eds) The fungal community, its organization and role in the ecosystem. Marcel-Decker, New York, 1992.
9. Cázares-Samaniego P. J., Castillo C. G., Ramos-López M. A., González-Chávez M. M. Molecules. 2021; 26 (20): 6311. https://doi.org/10.3390/molecules26206311.
10. Chitwood D. Phytochemical based strategies for nematode control. Annual Review of Phytopathology. 2002; 40: 221–249. https://doi.org/10.1146/annurev.phyto.40.032602.130045
11. Christensen S., Griffiths B. S., Ekelund F., Ronn R. Huge increase in bacterivores on freshly killed barley roots. FEMS Microbiology Ecology. 1992; 86: 303-309.
12. Crespoa R., Villaverdea M. L., Girotti J. R. et al. Cytotoxic and genotoxic effects of defence secretion of Ulomoides dermestoides on A549 cells. Journal of Ethnopharmacology. 2011; 136: 204–209. https://doi.org/10.1016/j.jep.2011.04.056
13. De Deyn G. B., Raaijmakers C.E., Zoomer H.R., et al. Soil invertebrate fauna enhances grassland succession and diversity. Nature. 2003; 422: 711-713. https://doi.org/10.1038/nature01548
14. Deloya-Brito G. G., Deloya C. Substances produced by the beetle Ulomoides dermestoides (Chevrolat, 1878) (Insecta: Coleoptera: Tenebrionidae): inflammatory and cytotoxic effect. Acta Zoológica Mexicana. 2014; 30 (3): 655-661. https://doi.org/10.21829/azm.2014.30384
15. Duarte S., Magro A., Tomás J. et al. Antifungal activity of benzoquinones produced by Tribolium castaneum in maize-associated fungi. Insects. 2022; 13 (10): 868. https://doi.org/10.3390/insects13100868
16. Hamaguchi T., Sato K., Vicente C. S. L. and Hasegawa K. Nematicidal actions of the marigold exudate α-terthienyl: oxidative stress-inducing compound penetrates nematode hypodermis. Biology Open. 2019; 8: bio038646. https://doi.org/10.1242/bio.03864614
17. Kovalzon V. M., Ambaryan A. V., Revishchin A. V. et al. Preventive activity of the extract of the Ulomoides dermestoides darkling beetle in the diet of C57BL/6JSTO mice in a neurotoxic model of Parkinson's disease. Preprints (www. preprints.org) 2021, Distributed under a Creative Commons CC BY license. https://doi.org/10.20944/preprints202105.0190.v2
18. Leela N. K., Khan R. M., Reddy P. P., Nidiry E. S. J. Nematicidal activity of essential oil of Pelargonium graveolens against the root-knot nematode Meloidogyne incognita. Nematologia Mediterranea. 1992; 20: 57–58.
19. Lichtenthaler H. K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology. 1987; 148: 350–382. https://doi.org/10.1016/0076-6879(87)48036-1
20. Mendoza M. D., Salgado Y. M., Durant I. L. Antioxidant capacity of whole-body methanolic extracts of the beetle Ulomoides dermestoides (Chevrolat, 1893). Revista Cubana de Investigaciones Biomédicas. 2013; 32 (4): 402-410.
21. Mendoza M. D. L., Saavedra A. S. Chemical composition and anti-irritant capacity of wholebody extracts of Ulomoides dermestoides (Coleoptera, Tenebrionidae). Vitae. 2013; 20: 41–48. https://doi.org/10.17533/udea.vitae.10994
22. Mendoza M. D. L., España-Puccini P. Cytotoxic and genotoxic activity of phenolic fractions from Ulomoides dermestoides (Fairmaire, 1893; Coleoptera, Tenebrionidae), in HaCat cells. Tip revista especializada en ciencias químico-biológicas. 2016; 19 (2): 83–91. https://doi.org/10.1016/j.recqb.2016.06.001
23. Nahar M. S., Grewal P. S., Miller S. A. et al. Differential effects of raw and composted manure on nematode community, and its indicative value for soil microbial, physical and chemical properties. Applied Soil Ecology. 2006; 34: 140–151. https://doi.org/10.1016/j.apsoil.2006.03.011
24. Neher D. A. Role of nematodes in soil health and their use as indicators. Journal of Nematology. 2001; 33 (4):161–168.
25. Nelson C. M., Ihle K. E., Fondrk M. K. et al. The Gene vitellogenin has multiple coordinating effects on social organization. PLoS Biology. 2007; 5: e62. https://doi.org/10.1371/journal.pbio.0050062
26. Oka Y., Tkachi N., Shuker S. et al Laboratory studies on the enhancement of nematicidal activity of ammoniareleasing fertilizers by alkaline amendments. Nematology. 2006; 8: 335–346. https://doi.org/10.1163/156854106778493466
27. Pedrini N., Ortiz-Urquiza A., Huarte-Bonnet C. et al. Tenebrionid secretions and a fungal benzoquinone oxidoreductase form competing components of an arms race between a host and pathogen. PNAS. 2015; 112 (28): E3651-E3660 https://doi.org/10.1073/pnas.1504552112
28. Santos R. C. V., Lunardelli A., Caberion E., Bastos C. M. A. Anti-inflammatory and immunomodulatory effects of Ulomoides dermestoides on induced pleurisy in rats and lymphoproliferation in vitro. Inflammation. 2009; 33: 173–179. https://doi.org/10.1007/s10753-009-9171-x
29. Steel H., de la Pen˜a E., Fonderie P. et al. Nematode succession during composting and the potential of the nematode community as an indicator of compost maturity. Pedobiologia. 2010; 53(3): 181-190. https://doi.org/10.1016/j.pedobi.2009.09.003
30. Stirling G. R. Biological Control of Plant-Parasitic Nematodes: An Ecological Perspective, a Review of Progress and Opportunities for Further Research. In: Davies K., Spiegel Y. (Eds.) Progress in Biological Control (PIBC, V. 11), Springer Dordrecht Heidelberg London New York. 2011; P. 1–38. https://doi.org/10.1007/978-1-4020-9648-8
31. Stirling G. R., Wilson E., Stirling A. M. et al. Amendments of sugarcane trash induce suppressiveness to plant-parasitic nematodes in sugarcane soil. Australasian Plant Pathology. 2005; 34: 203–211. https://doi.org/10.1071/ap05022
32. Tzean S. S., Liou J. Y. Nematophagous resupinate basidiomycetous fungi. Phytopathology. 1993; 83: 1015–1020.
33. Udalova Zh., Ushakova N., Butorina N., Zinovieva S. Influence of insectocomposts through Hermetia illucens larvae on nematodes of various ecologicaltrophic groups. Research on Crops. 2021; 22 (1): 150-157. https://doi.org/10.31830/2348-7542.2021.049
34. Ushakova N. A. Brodsky E. S., Tikhonova O. V. et al. Novel extract from beetle Ulomoides dermestoides: A study of composition and antioxidant activity. Antioxidants. 2021; 10 (7):1055. https://doi.org/10.3390/antiox10071055
35. Ushakova N. A., Tikhonova O. V., Ambaryan A. V. et al. A protein antioxidant complex of a water extract of the larvae of black beetles Ulomoides dermestoides. Applied Biochemistry and Microbiology. 2022; 58: 147–152. https://doi.org/10.1134/S0003683822100155
36. Villaverde M. L., Girotti J. R., Mijailovsky S. J., Pedrin N. & Juárez M. P. Volatile secretions and epicuticular hydrocarbons of the beetle Ulomoides dermestoides. Comparative Biochemistry & Physiology Part B: Biochemical and Molecular Biology. 2009; 154 (4): 381-386. https://doi.org/10.1016/j.cbpb.2009.08.001.
37. Yeates G.W. Nematodes as soil indicators: functional and biodiversity aspects. Biol. Fertil. Soils. 2003; 37: 199-210.
38. Zhang X. K., Wu X., Zhang S. X. et al. Organic amendment effects on nematode distribution within aggregate fractions in agricultural soils. Soil Ecology Letters. 2019; 1 (3-4): 147–156. https://doi.org/10.1007/s42832-019-0010-1
Review
For citations:
Udalova Zh.V., Butorina N.N., Ushakova N.A., Zinovieva S.V. Influence of insectocompost obtained by cultivation of the during beetle Ulomoides dermestoides on the ecological-trophic composition and development of soil and phytoparasitic nematodes. Russian Journal of Parasitology. 2024;18(1):87-99. (In Russ.) https://doi.org/10.31016/1998-8435-2024-18-1-87-99